Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature

84Citations
Citations of this article
113Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Highly efficient current-induced motion of chiral domain walls was recently demonstrated in synthetic antiferromagnetic (SAF) structures due to an exchange coupling torque (ECT). The ECT derives from the antiferromagnetic exchange coupling through a ruthenium spacer layer between the two perpendicularly magnetized layers that comprise the SAF. Here we report that the same ECT mechanism applies to ferrimagnetic bi-layers formed from adjacent Co and Gd layers. In particular, we show that the ECT is maximized at the temperature TA where the Co and Gd angular momenta balance each other, rather than at their magnetization compensation temperature TM. The current induced velocity of the domain walls is highly sensitive to longitudinal magnetic fields but we show that this not the case near TA. Our studies provide new insight into the ECT mechanism for ferrimagnetic systems. The high efficiency of the ECT makes it important for advanced domain wall based spintronic devices.

Cite

CITATION STYLE

APA

Bläsing, R., Ma, T., Yang, S. H., Garg, C., Dejene, F. K., N’Diaye, A. T., … Parkin, S. S. P. (2018). Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-07373-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free