Expiratory automatic endotracheal tube compensation reduces dynamic hyperinflation in a physical lung model

14Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Introduction: The effect of expiratory endotracheal tube (ETT) resistance on dynamic lung inflation is unknown. We hypothesized that ETT resistance causes dynamic lung hyperinflation by impeding lung emptying. We further hypothesized that compensation for expiratory ETT resistance by automatic tube compensation (ATC) attenuates dynamic lung hyperinflation. Methods: A ventilator equipped with the original ATC mode and operating in a pressure-targeted mode was connected to a physical lung model that consists of four equally sized glass bottles filled with copper wool. Inspiratory pressure, peak expiratory flow, trapped lung volume and intrinsic positive end-expiratory pressure (PEEP) were assessed at combinations of four inner ETT diameters (7.0, 7.5, 8.0 and 8.5 mm), four respiratory rates (15, 20, 25 and 30/minute), three inspiratory pressures (3.0, 4.5 and 6.0 cmH2O) and four lung compliances (113, 86, 58 and 28 ml/cmH2O). Intrinsic PEEP was measured at the end of an expiratory hold manoeuvre. Results: At a given test lung compliance, inspiratory pressure and ETT size, increasing respiratory rates from 15 to 30/minutes had the following effects: inspiratory tidal volume and peak expiratory flow were decreased by means of 25% (range 0% to 51%) and 11% (8% to 12%), respectively; and trapped lung volume and intrinsic PEEP were increased by means of 25% (0% to 51%) and 26% (5% to 45%), respectively (all P < 0.025). At otherwise identical baseline conditions, introduction of expiratory ATC significantly attenuated (P < 0.025), by approximately 50%, the respiratory rate-dependent decreases in inspiratory tidal volume and the increases in trapped lung volume and intrinsic PEEP. Conclusions: In a lung model of pressure-targeted ventilation, expiratory ETT resistance caused dynamic lung hyperinflation during increases in respiratory rates, thereby reducing inspiratory tidal volume. Expiratory ATC attenuated these adverse effects. © 2009 Haberthür et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Haberthür, C., Mehlig, A., Stover, J. F., Schumann, S., Möller, K., Priebe, H. J., & Guttmann, J. (2009). Expiratory automatic endotracheal tube compensation reduces dynamic hyperinflation in a physical lung model. Critical Care, 13(1). https://doi.org/10.1186/cc7693

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free