Cooperative Recharge Scheme Based on a Hamiltonian Path in Mobile Wireless Rechargeable Sensor Networks

6Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The energy problem and limited capacity of batteries have been fundamental constraints in many wireless sensor network (WSN) applications. For WSN, the wireless energy transmission technology based on magnetic resonance coupling is a promising energy transmission technology. To reduce the cost and energy consumption during charging in mobile wireless rechargeable sensor networks (MWRSNs), a cooperative mobile charging mechanism based on the Hamiltonian path is proposed in this paper. To improve the charging task interval, we study the use of a mobile charger (MC) as a mobile sink node to collect the data in this paper. Then, we used the sink and the charging sensors selected by the MC to construct the undirected complete graph. Finally, the Euclidean distance between nodes is used as the edge weight and a Hamiltonian loop is found by using the improved Clark-Wright (C-W) saving algorithm to solve the problem of charging a rechargeable sensor network. In addition to the energy usage efficiency (EUE) and the network lifetime, the average energy loss per unit time is considered as the evaluation index according to the impact of the MC on the energy consumption during charging. The simulation results show that the proposed scheme increases the average network lifetime, decreases the average energy loss per unit time, and improves the EUE.

Cite

CITATION STYLE

APA

Li, H., Liu, Q., Ma, X., Qi, Q., Liu, J., Zhao, P., … Zhang, X. (2022). Cooperative Recharge Scheme Based on a Hamiltonian Path in Mobile Wireless Rechargeable Sensor Networks. Mathematical Problems in Engineering, 2022. https://doi.org/10.1155/2022/6955713

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free