Blockade of B7-H1 on Macrophages Suppresses CD4+ T Cell Proliferation by Augmenting IFN-γ-Induced Nitric Oxide Production

  • Yamazaki T
  • Akiba H
  • Koyanagi A
  • et al.
121Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

Abstract

PD-1 is an immunoinhibitory receptor that belongs to the CD28/CTLA-4 family. B7-H1 (PD-L1) and B7-DC (PD-L2), which belong to the B7 family, have been identified as ligands for PD-1. Paradoxically, it has been reported that both B7-H1 and B7-DC costimulate or inhibit T cell proliferation and cytokine production. To determine the role of B7-H1 and B7-DC in T cell-APC interactions, we examined the contribution of B7-H1 and B7-DC to CD4+ T cell activation by B cells, dendritic cells, and macrophages using anti-B7-H1, anti-B7-DC, and anti-PD-1 blocking mAbs. Anti-B7-H1 mAb and its Fab markedly inhibited the proliferation of anti-CD3-stimulated naive CD4+ T cells, but enhanced IL-2 and IFN-γ production in the presence of macrophages. The inhibition of T cell proliferation by anti-B7-H1 mAb was abolished by neutralizing anti-IFN-γ mAb. Coculture of CD4+ T cells and macrophages from IFN-γ-deficient or wild-type mice showed that CD4+ T cell-derived IFN-γ was mainly responsible for the inhibition of CD4+ T cell proliferation. Anti-B7-H1 mAb induced IFN-γ-mediated production of NO by macrophages, and inducible NO synthase inhibitors abrogated the inhibition of CD4+ T cell proliferation by anti-B7-H1 mAb. These results indicated that the inhibition of T cell proliferation by anti-B7-H1 mAb was due to enhanced IFN-γ production, which augmented NO production by macrophages, suggesting a critical role for B7-H1 on macrophages in regulating IFN-γ production by naive CD4+ T cells and, hence, NO production by macrophages.

Cite

CITATION STYLE

APA

Yamazaki, T., Akiba, H., Koyanagi, A., Azuma, M., Yagita, H., & Okumura, K. (2005). Blockade of B7-H1 on Macrophages Suppresses CD4+ T Cell Proliferation by Augmenting IFN-γ-Induced Nitric Oxide Production. The Journal of Immunology, 175(3), 1586–1592. https://doi.org/10.4049/jimmunol.175.3.1586

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free