OpenMP and compilation issue in embedded applications

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Currently embedded systems become more and more important and widely applied to everywhere around us, such as a mobile phone, a PDA, an HDTV, and so on. In this paper, we applied OpenMP to non-traditional benchmarks, i.e. embedded applications in order to examine the applicability of OpenMP in this area. We parallelized embedded benchmarks, called EEMBC, consisting of 5 categories and total 34 applications, and measure their performance in detail. From experiment, we could find 90 parallel sections in 17 applications, but we achieved speedup only in four applications. Since embedded applications consists of a chunk of small loops, we could not get speedup due to large parallelization overheads such as thread management and instruction overheads. Also we show that the OpenMP-inserted parallel code size is much larger than a serial version due to multithreaded libraries, which is critical to embedded systems because of their limited size of memory systems. We discuss an identified critical, but a trivial problem in the current OpenMP specification when we applied OpenMP to these applications. © Springer-Verlag Berlin Heidelberg 2003.

Cite

CITATION STYLE

APA

Oh, J., Kim, S. W., & Kim, C. (2003). OpenMP and compilation issue in embedded applications. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2716, 109–121. https://doi.org/10.1007/3-540-45009-2_9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free