Building on the ideas of Flajolet and Martin (1985), Alon et al. (1987), Bar-Yossef et al. (2002), Giroire (2005), we develop a new algorithm for cardinality estimation, based on order statistics which, according to Chassaing and Gerin (2006), is optimal among similar algorithms. This algorithm has a remarkably simple analysis that allows us to take its $\textit{fine-tuning}$ and the $\textit{characterization of its properties}$ further than has been done until now. We prove that, asymptotically, it is $\textit{strictly unbiased}$ (contrarily to Probabilistic Counting, Loglog, Hyperloglog), we verify that its relative precision is about $1/\sqrt{m-2}$ when $m$ words of storage are used, and we fully characterize the limit law of the estimates it provides, in terms of gamma distribution―-this is the first such algorithm for which the limit law has been established. We also develop a Poisson analysis for the pre-asymptotic regime. In this way, we are able to devise a complete algorithm, covering all cardinalities ranges from $0$ to very large.
CITATION STYLE
Lumbroso, J. (2010). An optimal cardinality estimation algorithm based on order statistics and its full analysis. Discrete Mathematics & Theoretical Computer Science, DMTCS Proceedings vol. AM,...(Proceedings). https://doi.org/10.46298/dmtcs.2780
Mendeley helps you to discover research relevant for your work.