β-Amylase hydrolyzes polysaccharides, such as starch, into maltose. It is used as an industrial enzyme in the production of food and pharmaceuticals. The eukaryotic red alga Cyanidioschyzon merolae is a unicellular alga that grows at an optimum pH of 2.0-3.0 and an optimum temperature of 40-50 °C. By focusing on the thermostability and acid resistance of the proteins of C. merolae, we investigated the properties of β-amylase from C. merolae (hereafter CmBAM) and explored the possibility of using CmBAM as an industrial enzyme. CmBAM showed the highest activity at 47 °C and pH 6.0. CmBAM had a relatively higher specificity for amylose as a substrate than for starch. Immobilization of CmBAM on a silica gel carrier improved storage stability and thermostability, allowing the enzyme to be reused. The optimum temperature and pH of CmBAM were comparable to those of existing β-amylases from barley and wheat. C. merolae does not use amylose, but CmBAM has a substrate specificity for both amylose and amylopectin but not for glycogen. Among the several β-amylases reported, CmBAM was unique, with a higher specificity for amylose than for starch. The high specificity of CmBAM for amylose suggests that isoamylase and pullulanase, which cleave the α-1,6 bonds of starch, may act together in vivo. Compared with several reported immobilized plant-derived β-amylases, immobilized CmBAM was comparable to β-amylase, with the highest reusability and the third-highest storage stability at 30 days of storage. In addition, immobilized CmBAM has improved thermostability by 15-20 °C, which can lead to wider applications and easier handling.
CITATION STYLE
Murakami, M., & Osanai, T. (2022). Biochemical Properties of β-Amylase from Red Algae and Improvement of Its Thermostability through Immobilization. ACS Omega, 7(41), 36195–36205. https://doi.org/10.1021/acsomega.2c03315
Mendeley helps you to discover research relevant for your work.