The genome-scale DNA-binding profile of BarR, a β-alanine responsive transcription factor in the archaeon Sulfolobus acidocaldarius

13Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The Leucine-responsive Regulatory Protein (Lrp) family is a widespread family of regulatory transcription factors in prokaryotes. BarR is an Lrp-like transcription factor in the model archaeon Sulfolobus acidocaldarius that activates the expression of a β-alanine aminotransferase gene, which is involved in β-alanine degradation. In contrast to classical Lrp-like transcription factors, BarR is not responsive to any of the α-amino acids but interacts specifically with β-alanine. Besides the juxtaposed β-alanine aminotransferase gene, other regulatory targets of BarR have not yet been identified although β-alanine is the precursor of coenzyme A and thus an important central metabolite. The aim of this study is to extend the knowledge of the DNA-binding characteristics of BarR and of its corresponding regulon from a local to a genome-wide perspective. Results: We characterized the genome-wide binding profile of BarR using chromatin immunoprecipation combined with high-throughput sequencing (ChIP-seq). This revealed 21 genomic binding loci. High-enrichment binding regions were validated to interact with purified BarR protein in vitro using electrophoretic mobility shift assays and almost all targets were also shown to harbour a conserved semi-palindromic binding motif. Only a small subset of enriched genomic sites are located in intergenic regions at a relative short distance to a promoter, and qRT-PCR analysis demonstrated that only one additional operon is under activation of BarR, namely the glutamine synthase operon. The latter is also a target of other Lrp-like transcription factors. Detailed inspection of the BarR ChIP-seq profile at the β-alanine aminotransferase promoter region in combination with binding motif predictions indicate that the operator structure is more complicated than previously anticipated, consisting of multiple (major and auxiliary) operators. Conclusions: BarR has a limited regulon, and includes also glutamine synthase genes besides the previously characterized β-alanine aminotransferase. Regulation of glutamine synthase is suggestive of a link between β-alanine and α-amino acid metabolism in S. acidocaldarius. Furthermore, this work reveals that the BarR regulon overlaps with that of other Lrp-like regulators.

Cite

CITATION STYLE

APA

Liu, H., Wang, K., Lindås, A. C., & Peeters, E. (2016). The genome-scale DNA-binding profile of BarR, a β-alanine responsive transcription factor in the archaeon Sulfolobus acidocaldarius. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-2890-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free