Peach kernel and safflower herb-pair (PKSH) are widely used in traditional Chinese medicine for the treatment of liver fibrosis. Therefore, network pharmacology was performed to explore potential therapeutic targets and pharmacological mechanisms of PKSH. The active components of PKSH from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database and potential targets of liver fibrosis from the Online Mendelian Inheritance in Man, Pharmacogenetics and Pharmacogenomics Knowledge Base, GeneCards, and DrugBank Database were identified. The protein-protein interaction network was constructed using Cytoscape (v3.8.0). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the treatment of liver fibrosis, and molecular docking was carried out to verify the results of network pharmacology analysis. After screening disease-related genes, 179 intersection genes overlapped between 196 target proteins of the active compound and 9189 potential disease targets. Furthermore, we obtained 15 hub nodes and 146 edges to establish a related network diagram using CytoNCA. 2559 Gene Ontology biological processes underlying PKSH have been explored for the treatment of liver fibrosis, in which the response to oxidative stress plays a vital role. Furthermore, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that PKSH might play a role in inhibiting liver fibrosis, mainly through the PI3K-Akt signaling pathway. PKSH can regulate the response to oxidative stress through the PI3K-Akt signaling pathway for the treatment of liver fibrosis. The main bioactive components in PKSH, including quercetin and luteolin, can activate the PI3K-Akt signaling pathway by binding with the hub targets of the disease, which may provide insights into drug development for liver fibrosis.
CITATION STYLE
Huang, L., Yu, Q., Peng, H., & Zhen, Z. (2023, April 21). The mechanism of peach kernel and safflower herb-pair for the treatment of liver fibrosis based on network pharmacology and molecular docking technology: A review. Medicine (United States). Lippincott Williams and Wilkins. https://doi.org/10.1097/MD.0000000000033593
Mendeley helps you to discover research relevant for your work.