Identifying Outliers in Response Quality Assessment by Using Multivariate Control Charts Based on Kernel Density Estimation

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

When monitoring industrial processes, a Statistical Process Control tool, such as a multivariate Hotelling T2 chart is frequently used to evaluate multiple quality characteristics. However, research into the use of T2 charts for survey fieldwork-essentially a production process in which data sets collected by means of interviews are produced-has been scant to date. In this study, using data from the eighth round of the European Social Survey in Belgium, we present a procedure for simultaneously monitoring six response quality indicators and identifying outliers: interviews with anomalous results. The procedure integrates Kernel Density Estimation (KDE) with a T2 chart, so that historical "in-control"data or reference to the assumption of a parametric distribution of the indicators is not required. In total, 75 outliers (4.25%) are iteratively removed, resulting in an in-control data set containing 1,691 interviews. The outliers are mainly characterized by having longer sequences of identical answers, a greater number of extreme answers, and against expectation, a lower item nonresponse rate. The procedure is validated by means of ten-fold cross-validation and comparison with the minimum covariance determinant algorithm as the criterion. By providing a method of obtaining in-control data, the present findings go some way toward a way to monitor response quality, identify problems, and provide rapid feedbacks during survey fieldwork.

Cite

CITATION STYLE

APA

Jin, J., & Loosveldt, G. (2021). Identifying Outliers in Response Quality Assessment by Using Multivariate Control Charts Based on Kernel Density Estimation. Journal of Official Statistics, 37(1), 97–119. https://doi.org/10.2478/jos-2021-0005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free