A novel three-colour fluorescence in situ hybridization approach for the detection of t(7;12)(q36;p13) in acute myeloid leukaemia reveals new cryptic three way translocation t(7;12;16)

9Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

The t(7;12)(q36;p13) translocation is a recurrent chromosome abnormality that involves the ETV6 gene on chromosome 12 and has been identified in 20-30% of infant patients with acute myeloid leukaemia (AML). The detection of t(7;12) rearrangements relies on the use of fluorescence in situ hybridization (FISH) because this translocation is hardly visible by chromosome banding methods. Furthermore, a fusion transcript HLXB9-ETV6 is found in approximately 50% of t(7;12) cases, making the reverse transcription PCR approach not an ideal screening method. Considering the report of few cases of variant translocations harbouring a cryptic t(7;12) rearrangement, we believe that the actual incidence of this abnormality is higher than reported to date. The clinical outcome of t(7;12) patients is believed to be poor, therefore an early and accurate diagnosis is important in the clinical management and treatment. In this study, we have designed and tested a novel three-colour FISH approach that enabled us not only to confirm the presence of the t(7;12) in a number of patients studied previously, but also to identify a cryptic t(7;12) as part of a complex rearrangement. This new approach has proven to be an efficient and reliable method to be used in the diagnostic setting. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Naiel, A., Vetter, M., Plekhanova, O., Fleischman, E., Sokova, O., Tsaur, G., … Tosi, S. (2013). A novel three-colour fluorescence in situ hybridization approach for the detection of t(7;12)(q36;p13) in acute myeloid leukaemia reveals new cryptic three way translocation t(7;12;16). Cancers, 5(1), 281–295. https://doi.org/10.3390/cancers5010281

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free