Adoptive immunotherapy with Ag-specific T lymphocytes is a powerful strategy for cancer treatment. However, most tumor Ags are nonreactive “self” proteins, which presents an immunotherapy design challenge. Recent studies have shown that tumor-specific TCRs can be transduced into normal PBLs, which persist after transfer in ∼30% of patients and effectively destroy tumor cells in vivo. Although encouraging, the limited clinical responses underscore the need for enrichment of T cells with desirable antitumor capabilities prior to patient transfer. In this study, we used structure-based design to predict point mutations of a TCR (DMF5) that enhance its binding affinity for an agonist tumor Ag–MHC (peptide–MHC [pMHC]), Mart-1 (27L)-HLA-A2, which elicits full T cell activation to trigger immune responses. We analyzed the effects of selected TCR point mutations on T cell activation potency and analyzed cross-reactivity with related Ags. Our results showed that the mutated TCRs had improved T cell activation potency while retaining a high degree of specificity. Such affinity-optimized TCRs have demonstrated to be very specific for Mart-1 (27L), the epitope for which they were structurally designed. Although of somewhat limited clinical relevance, these studies open the possibility for future structural-based studies that could potentially be used in adoptive immunotherapy to treat melanoma while avoiding adverse autoimmunity-derived effects.
CITATION STYLE
Malecek, K., Grigoryan, A., Zhong, S., Gu, W. J., Johnson, L. A., Rosenberg, S. A., … Krogsgaard, M. (2014). Specific Increase in Potency via Structure-Based Design of a TCR. The Journal of Immunology, 193(5), 2587–2599. https://doi.org/10.4049/jimmunol.1302344
Mendeley helps you to discover research relevant for your work.