Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics

  • Comfort K
  • Speltz J
  • Stacy B
  • et al.
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Investigations into the use of gold nanorods (Au-NRs) for biological applications are growing exponentially due to their distinctive physicochemical properties, which make them advantageous over other nanomaterials. Au-NRs are particularly renowned for their plasmonic characteristics, which generate a robust photothermal response when stimulated with light at a wavelength matching their surface plasmon resonance. Numerous reports have explored this nanophotonic phenomenon for temperature driven therapies; however, to date there is a significant knowledge gap pertaining to the kinetic heating profile of Au-NRs within a controlled physiological setting. In the present study, the impact of environmental composition on Au-NR behavior and degree of laser actuated thermal production was assessed. Through acellular evaluation, we identified a loss of photothermal efficiency in biologically relevant fluids and linked this response to excessive particle aggregation and an altered Au-NR spectral profile. Furthermore, to evaluate the potential impact of solution composition on the efficacy of nano-based biological applications, the degree of targeted cellular destruction was ascertained in vitro and was found to be susceptible to fluid-dependent modifications. In summary, this study identified a diminution of Au-NR nanophotonic response in artificial physiological fluids that translated to a loss of application efficiency, pinpointing a critical concern that must be considered to advance in vivo, nano-based bio-applications.

Cite

CITATION STYLE

APA

Comfort, K. K., Speltz, J. W., Stacy, B. M., Dosser, L. R., & Hussain, S. M. (2013). Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics. Advances in Nanoparticles, 02(04), 336–343. https://doi.org/10.4236/anp.2013.24046

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free