As an important tool for systematic analysis, genome-scale metabolic network (GSMN) model has been widely used in various organisms. However, there are few reports on the GSMNs of aquatic crustaceans. Litopenaeus vannamei is the largest and most productive shrimp species. Feed improvement is one of the important methods to improve the yield of L. vannamei and control water pollution caused by the inadequate absorption of feed. In this work, the first L. vannamei GSMN named iGH3005 was reconstructed and applied to the optimization of feed. iGH3005 was reconstructed based on the genomic data. The model includes 2,292 reactions and 3,005 genes. iGH3005 was used to analyze the nutritional requirements of five different L. vannamei commercial varieties and the genes influencing the metabolism of the nutrients. Based on the simulation, we found that tyrosine-protein kinase src64b like may catalyze different reactions in different commercial varieties. The preference of carbohydrate utilization is different in various commercial varieties, which may due to the different expressions of some genes. In addition, this investigation suggests that a rational and targeted modification in the macronutrient content of shrimp feed would lead to an increase in growth and feed conversion rate. The feed for different commercial varieties should be adjusted accordingly, and possible adjustment schemes were provided. The results of this work provided important information for physiological research and optimization of the components in feed of L. vannamei.
CITATION STYLE
Gao, C., Yang, J., Hao, T., Li, J., & Sun, J. (2021). Reconstruction of Litopenaeus vannamei Genome-Scale Metabolic Network Model and Nutritional Requirements Analysis of Different Shrimp Commercial Varieties. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.658109
Mendeley helps you to discover research relevant for your work.