Oral histone deacetylase inhibitor synergises with T cell targeted immunotherapy to preserve beta cell metabolic function and induce stable remission of new-onset autoimmune diabetes in NOD mice

15Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aim/hypothesis: Combination therapy targeting the major actors involved in the immune-mediated destruction of pancreatic beta cells appears to be an indispensable approach to treat type 1 diabetes effectively. We hypothesised that the combination of an orally active pan-histone deacetylase inhibitor (HDACi: givinostat) with subtherapeutic doses of CD3 antibodies may provide ideal synergy to treat ongoing autoimmunity. Methods: NOD mice transgenic for the human CD3ε (also known as CD3E) chain (NOD-huCD3ε) were treated for recent-onset diabetes with oral givinostat, subtherapeutic doses of humanised CD3 antibodies (otelixizumab, 50 μg/day, 5 days, i.v.) or a combination of both drugs. Disease remission, metabolic profiles and autoreactive T cell responses were analysed in treated mice. Results: We demonstrated that givinostat synergised with otelixizumab to induce durable remission of diabetes in 80% of recently diabetic NOD-huCD3ε mice. Remission was obtained in only 47% of mice treated with otelixizumab alone. Oral givinostat monotherapy did not reverse established diabetes but reduced the in situ production of inflammatory cytokines (IL-1β, IL-6, TNF-α). Importantly, the otelixizumab + givinostat combination strongly improved the metabolic status of NOD-huCD3ε mice; the mice recovered the capacity to appropriately produce insulin, control hyperglycaemia and sustain glucose tolerance. Finally, diabetes remission induced by the combination therapy was associated with a significant reduction of insulitis and autoantigen-specific CD8+ T cell responses. Conclusions/interpretation: HDACi and low-dose CD3 antibodies synergised to abrogate in situ inflammation and thereby improved pancreatic beta cell survival and metabolic function leading to long-lasting diabetes remission. These results support the therapeutic potential of protocols combining these two drugs, both in clinical development, to restore self-tolerance and insulin independence in type 1 diabetes.

Cite

CITATION STYLE

APA

Besançon, A., Goncalves, T., Valette, F., Dahllöf, M. S., Mandrup-Poulsen, T., Chatenoud, L., & You, S. (2018). Oral histone deacetylase inhibitor synergises with T cell targeted immunotherapy to preserve beta cell metabolic function and induce stable remission of new-onset autoimmune diabetes in NOD mice. Diabetologia, 61(2), 389–398. https://doi.org/10.1007/s00125-017-4459-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free