Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions

19Citations
Citations of this article
80Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Genome-wide association study (GWAS) is a useful tool for detecting and characterizing traits of interest including those associated with disease resistance in soybean. The availability of 50,000 single nucleotide polymorphism (SNP) markers (SoySNP50K iSelect BeadChip; www.soybase.org ) on 19,652 soybean and wild soybean plant introductions (PIs) in the USDA Soybean Germplasm Collection allows for fast and robust identification of loci associated with a desired phenotype. By using a genome-wide marker set to predict phenotypic values, genomic prediction for phenotype-unknown but genotype-determined PIs has become possible. The goal of this study was to describe the genetic architecture associated with sensitivity to Tobacco ringspot virus (TRSV) infection in the USDA Soybean Germplasm Collection. Results: TRSV-induced disease sensitivities of the 697 soybean PIs were rated on a one to five scale with plants rated as one exhibiting mild symptoms and plants rated as five displaying terminal bud necrosis (i.e., bud blight). The GWAS identified a single locus on soybean chromosome 2 strongly associated with TRSV sensitivity. Cross-validation showed a correlation of 0.55 (P < 0.01) to TRSV sensitivity without including the most significant SNP marker from the GWAS as a covariate, which was a better estimation compared to the mean separation by using significant SNPs. The genomic estimated breeding values for the remaining 18,955 unscreened soybean PIs in the USDA Soybean Germplasm Collection were obtained using the GAPIT R package. To evaluate the prediction accuracy, an additional 55 soybean accessions were evaluated for sensitivity to TRSV, which resulted in a correlation of 0.67 (P < 0.01) between actual and predicted severities. Conclusion: A single locus responsible for TRSV sensitivity in soybean was identified on chromosome 2. Two leucine-rich repeat receptor-like kinase genes were located near the locus and may control sensitivity of soybean to TRSV infection. Furthermore, a comprehensive genomic prediction for TRSV sensitivity for all accessions in the USDA Soybean Germplasm Collection was completed.

Cite

CITATION STYLE

APA

Chang, H. X., Brown, P. J., Lipka, A. E., Domier, L. L., & Hartman, G. L. (2016). Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-2487-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free