Deposition Modeling of Airborne Particulate Matter on Human Respiratory Tract During Winter Seasons in Arid-Urban Environment

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This study aimed to predict winter season street-level ambient particulate matter (PM) depositions within human airways using Multiple-Path Particle Dosimetry (MPPD) model. The PM exposure concentrations in the downtown street of As-Seeb, Oman were measured continuously over 20 days (31 October–9 December 2018) using a mobile ambient air quality monitoring instrument equipped with sensors. The MPPD model together with the associated default respiratory parameters was implemented to quantify the total, head, tracheobronchial (TB), and pulmonary (PL) regional PM depositions in airways among children (3, 8, and 14 years old) and adults (18 and 21 years old) groups. The street-level PM exposure concentration (µg/m3) levels for PM10 (avg 69.64; IQR 15.1), PM2.5 (avg 13.76; IQR 1.36) and PM1 (avg 3.67; IQR 0.52) was obtained during the winter season. The average 24-H PM2.5 (14 µg/m3) concentration was about 60, 50 and 44% lower when compared to US National Ambient Air Quality Standards (NAAQS), Canadian Ambient Air Quality Standard (CAAQS), and WHO daily ceilings of 35, 28 and 25 µg/m3, respectively. Across all the age groups, the total airways deposition was found to be very high in PM10 (92–99%), followed by PM2.5 (61–76%) and PM1 (33–49%) being the least. Similarly, the average deposition of PM10 in the head region (76%) was observed to be more than 4–15 times higher than TB (16%) and PL (4%) for all ages. Children recorded higher PM2.5 depositions in the TB (53–59%) region compared to adults (TB 47–51%). The PM10 lobar deposition of 8-year-old children is more than 7 times higher compared to 21-year-old adults due to their lower breathing heights and higher breathing rates. In general, PM clearance was very high in TB and poor in the alveolar region.

Cite

CITATION STYLE

APA

Amoatey, P., Omidvarborna, H., Al-Jabri, K., Al-Harthy, I., Baawain, M. S., & Al-Mamun, A. (2022). Deposition Modeling of Airborne Particulate Matter on Human Respiratory Tract During Winter Seasons in Arid-Urban Environment. Aerosol Science and Engineering, 6(1), 71–85. https://doi.org/10.1007/s41810-021-00125-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free