Bering Sea snow crabs (Chionoecetes opilio) are a commercially important crab harvested in the Bering Sea. Optimal management of this species requires an understanding of the biology of this crab that is currently incomplete. Fisheries managers apply a continuous growth model in their management of snow crab, which assumes that male crabs increase in size throughout their lifespan. Male snow crabs undergo a morphometric molt that leads to a disproportionate increase in chelae size and it is still debated whether this molt is associated with a terminal molt. This study was conducted to determine whether adult male C. opilio are anecdysic. Using current knowledge of the hormonal regulation of crustacean growth, snow crab physiology was manipulated to induce an increase in molting hormones (ecdysteroids). Since female snow crabs are known to undergo a terminal molt after attaining reproductive maturity, we compared ecdysteroid levels in eyestalk-ablated terminally molted females, small-clawed males and large-clawed males. Snow crabs were collected from the Bering Sea and maintained in circulating seawater at approximately 6°C. Animals were either eyestalk-ablated or left intact. Ecdysteroid levels in hemolymph were quantified using an enzyme-linked immunosorbant assay (ELISA). Circulating ecdysteroids were significantly higher in small-clawed male crabs when compared to large-clawed males or terminally molted females. Eyestalk-ablation increased circulating ecdysteroids in small-clawed males, but had no significant effect on circulating ecdysteroids in large-clawed males or in terminally molted females.
CITATION STYLE
Tamone, S. L., Adams, M. M., & Dutton, J. M. (2005). Effect of eyestalk-ablation on circulating ecdysteroids in hemolymph of snow crabs, Chionoecetes opilio: Physiological evidence for a terminal molt. In Integrative and Comparative Biology (Vol. 45, pp. 166–171). Society for Integrative and Comparative Biology. https://doi.org/10.1093/icb/45.1.166
Mendeley helps you to discover research relevant for your work.