LncRNA TUG1 promotes the progression of colorectal cancer via the miR-138-5p/ZEB2 axis

27Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

To explore the role of long-chain non-coding RNA (lncRNA) taurine up-regulated gene 1 (TUG1) in the development of colorectal cancer (CRC) via the miR-138-5p/zinc finger E-box-binding homeobox 2 (ZEB2) axis. Eighty-four CRC tissue specimens and 84 corresponding paracancerous tissue specimens were sampled from 84 patients with CRC admitted to the First Hospital of Jilin University from January 2018 to September 2019. The TUG1 expression in the specimens was determined, and its value in diagnosis and prognosis of CRC was analyzed. Additionally, constructed stable and transient overexpresison vectors and inhibition vectors were transfected into CRC cells. The MTT, transwell, and flow cytometry were adopted for analysis on the proliferation, invasion, and apoptosis of transfected cells, respectively, and a dual luciferase reporter (DLR) assay was carried out for correlation determination between TUG1 and miR-138-5p and between miR-138-5p and ZEB2. TUG1 was up-regulated in CRC, and serum TUG1 could be adopted as a diagnostic marker of CRC, with area-under-the-curve (AUC) larger than 0.8. In addition, siRNA-TUG1, shRNA-TUG1, miR-138-5p-mimics, and miR-138-5p-inhibitor were transfected into cells, and it turned out that overexpressing miR-138-5p and inhibiting ZEB2 exerted the same effects. The DLR assay revealed that TUG1 was able to targetedly regulate miR-138-5p, and miR-138-5p could targetedly regulate ZEB2, and in vitro experiments revealed that TUG1 could affect the epithelial-to-mesenchymal transition (EMT) of CRC via the miR-138-5p/ZEB2 axis. TUG1 could promote the development of CRC via the miR-138-5p/ZEB2 axis.

Cite

CITATION STYLE

APA

Yan, Z., Bi, M., Zhang, Q., Song, Y., & Hong, S. (2020). LncRNA TUG1 promotes the progression of colorectal cancer via the miR-138-5p/ZEB2 axis. Bioscience Reports, 40(6). https://doi.org/10.1042/BSR20201025

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free