A new natural policy gradient by stationary distribution metric

8Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The parameter space of a statistical learning machine has a Riemannian metric structure in terms of its objective function. [1] Amari proposed the concept of "natural gradient" that takes the Riemannian metric of the parameter space into account. Kakade [2] applied it to policy gradient reinforcement learning, called a natural policy gradient (NPG). Although NPGs evidently depend on the underlying Riemannian metrics, careful attention was not paid to the alternative choice of the metric in previous studies. In this paper, we propose a Riemannian metric for the joint distribution of the state-action, which is directly linked with the average reward, and derive a new NPG named "Natural State-action Gradient" (NSG). Then, we prove that NSG can be computed by fitting a certain linear model into the immediate reward function. In numerical experiments, we verify that the NSG learning can handle MDPs with a large number of states, for which the performances of the existing (N)PG methods degrade. © 2008 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Morimura, T., Uchibe, E., Yoshimoto, J., & Doya, K. (2008). A new natural policy gradient by stationary distribution metric. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5212 LNAI, pp. 82–97). https://doi.org/10.1007/978-3-540-87481-2_6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free