Effect of pretreatments on the enzymatic hydrolysis of high‐yield bamboo chemo‐mechanical pulp by changing the surface lignin content

16Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Hydrogen peroxide chemo‐mechanical pulp (APMP), sulfonated chemo‐mechanical pulp (SCMP), and chemical thermomechanical pulp (CTMP) were used as raw materials to explore the effects of hydrogen peroxide (HP), Fenton pretreatment (FP), and ethanol pretreatment (EP) on the enzymatic hydrolysis of high‐yield bamboo mechanical pulp (HBMP). The surface lignin distribution and contents of different HBMPs were determined using confocal laser scanning microscopy (CLSM) and X‐ray photoelectron spectroscopy (XPS). The correlation between the surface lignin and the enzymatic hydrolysis of HBMP was also investigated. The residue of enzymatic hydrolysis was used to adsorb methylene blue (MB). The results showed that the cracks and fine fibers on the surface of APMP, SCMP, and CTMP increased after FP, when compared to HP and EP. The total removal content of hemicellulose and lignin in SCMP after FP was higher than with HP and EP. Compared to SCMP, the crystallinity increased by 15.4%, and the surface lignin content of Fentonpretreated SCMP decreased by 11.7%. The enzymatic hydrolysis efficiency of HBMP after FP was higher than with HP and EP. The highest enzymatic hydrolysis of Fenton‐pretreated SCMP was 49.5%, which was higher than the enzymatic hydrolysis of Fenton‐pretreated APMP and CTMP. The removal rate of MB reached 94.7% after the adsorption of the enzymatic hydrolysis residue of SCMP. This work provides an effective approach for a high value‐added utilization of high‐yield bamboo pulp.

Cite

CITATION STYLE

APA

Luo, L., Yuan, X., Zhang, S., Wang, X., Li, M., & Wang, S. (2021). Effect of pretreatments on the enzymatic hydrolysis of high‐yield bamboo chemo‐mechanical pulp by changing the surface lignin content. Polymers, 13(5), 1–17. https://doi.org/10.3390/polym13050787

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free