The continued discharge of pharmaceuticals and personal care products (PPCPs) into the environment due to their widespread use and the lack of effective systems for their removal from water is a global problem. In this study, the dissipation of ibuprofen, diclofenac and triclosan added simultaneously in biopurification systems (BPSs) with different compositions and their effect on the microbial community structure was analysed. Three BPSs, constituted by mixtures of soil (S), peat (P), or raw wet olive mill cake (A) or its vermicompost (V) and straw (S) were prepared (SPS, SAS and SVS). Sorption and degradation experiments were carried out. After 84 days of incubation, more than 85% of each PPCP applied had dissipated. Methyl-triclosan was determined to be highest in the SVS biomixture. Biomixtures with lower C/N ratio and higher alpha diversity were the most effective in the removal of PPCPs. Initially, the BPS biomixtures showed a different microbial structure dominated by Proteobacteria, Actinobacteria and Bacteroidetes but after addition of PPCPs, a similar pattern was observed in the relative abundance of the phylum Chloroflexi, the class Sphingobacteriia and the genus Brevundimonas. These biopurification systems can be useful to prevent point source contamination due to the disposal of PPCP-contaminated waters.
CITATION STYLE
Delgado-Moreno, L., van Dillewijn, P., Nogales, R., & Romero, E. (2021). Straw-based biopurification systems to remove ibuprofen, diclofenac and triclosan from wastewaters: Dominant microbial communities. Agronomy, 11(8). https://doi.org/10.3390/agronomy11081507
Mendeley helps you to discover research relevant for your work.