Scientists have found that nanomaterials possess many outstanding features in their tiny grain structure compared to other common materials. Titanium at the nano-grain scale shows many novel characteristics which demonstrate suitability for use in surgical implants. In general, equal channel angular pressing (ECAP) is the most popular and simple process to produce nano-titanium. However, ECAP is time-consuming, power-wasting, and insufficiently produces the ultrafine grain structure. Therefore, the objective of this research is to propose a new method to improve the ECAP's performances to reach the ultrafine grain structure, and also to save production costs, based on the innovation theory of Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ). Research results show that the process time is reduced by 80%, and 94% of the energy is saved. Moreover, the grain size of the diameter for nano-titanium can be reduced from 160 nanometers (nm) to 80 nm. The results are a 50% reduction of diameter and a 75% improvement of volume. At the same time, the method creates a refined grain size and good mechanical properties in the nano-titanium. The proposed method can be applied to produce any nanomaterial as well as biomaterials.
CITATION STYLE
Wang, C. N., Lin, H. S., Hsueh, M. H., Wang, Y. H., Vu, T. H., & Lin, T. F. (2016). The sustainable improvement of manufacturing for nano-titanium. Sustainability (Switzerland), 8(4). https://doi.org/10.3390/su8040402
Mendeley helps you to discover research relevant for your work.