Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents

353Citations
Citations of this article
199Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The proximal promoter region of the human vascular endothelial growth factor (VEGF) gene contains a polypurine/polypyrimidine tract that serves as a multiple binding site for Sp1 and Egr-1 transcription factors. This tract contains a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif for the formation of an intramolecular G-quadruplex. In this study, we observed the progressive unwinding of the oligomer duplex DNA containing this region into single-stranded forms in the presence of KCl and the G-quadruplex-interactive agents TMPyP4 and telomestatin, suggesting the dynamic nature of this tract under conditions which favor the formation of the G-quadruplex structures. Subsequent footprinting studies with DNase I and S1 nucleases using a supercoiled plasmid DNA containing the human VEGF promoter region also revealed a long protected region, including the guanine-rich sequences, in the presence of KCl and telomestatin. Significantly, a striking hypersensitivity to both nucleases was observed at the 3′-side residue of the predicted G-quadruplex-forming region in the presence of KCl and telomestatin, indicating altered conformation of the human VEGF proximal promoter region surrounding the guanine-rich sequence. In contrast, when specific point mutations were introduced into specific guanine residues within the G-quadruplex-forming region (Sp1 binding sites) to abolish G-quadruplex-forming ability, the reactivity of both nucleases toward the mutated human VEGF proximal promoter region was almost identical, even in the presence of telomestatin with KCl. This comparison of wild-type and mutant sequences strongly suggests that the formation of highly organized secondary structures such as G-quadruplexes within the G-rich region of the human VEGF promoter region is responsible for observed changes in the reactivity of both nucleases within the polypurine/polypyrimidine tract of the human VEGF gene. The formation of the G-quadruplex structures from this G-rich sequence in the human VEGF promoter is further confirmed by the CD experiments. Collectively, our results provide strong evidence that specific G-quadruplex structures can naturally be formed by the G-rich sequence within the polypurine/ polypyrimidine tract of the human VEGF promoter region, raising the possibility that the transcriptional control of the VEGF gene can be modulated by G-quadruplex-interactive agents. © The Author 2005. Published by Oxford University Press. All rights reserved.

Cite

CITATION STYLE

APA

Sun, D., Guo, K., Rusche, J. J., & Hurley, L. H. (2005). Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Research, 33(18), 6070–6080. https://doi.org/10.1093/nar/gki917

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free