Big data analytics employs algorithms to uncover people’s preferences and values, and support their decision making. A central assumption of big data analytics is that it can explain and predict human behavior. We investigate this assumption, aiming to enhance the knowledge basis for developing algorithmic standards in big data analytics. First, we argue that big data analytics is by design atheoretical and does not provide process-based explanations of human behavior; thus, it is unfit to support deliberation that is transparent and explainable. Second, we review evidence from interdisciplinary decision science, showing that the accuracy of complex algorithms used in big data analytics for predicting human behavior is not consistently higher than that of simple rules of thumb. Rather, it is lower in situations such as predicting election outcomes, criminal profiling, and granting bail. Big data algorithms can be considered as candidate models for explaining, predicting, and supporting human decision making when they match, in transparency and accuracy, simple, process-based, domain-grounded theories of human behavior. Big data analytics can be inspired by behavioral and cognitive theory.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Katsikopoulos, K. V., & Canellas, M. C. (2022). Decoding human behavior with big data? Critical, constructive input from the decision sciences. AI Magazine, 43(1), 126–138. https://doi.org/10.1002/aaai.12034