Glucagon-like peptide-1 (GLP-1) is an intestinally derived insulinotropic hormone currently under investigation for use as a novel therapeutic agent in the treatment of type 2 diabetes mellitus. In vitro studies of pancreatic islets of Langerhans demonstrated that GLP-1 interacts with specific beta-cell G protein-coupled receptors, thereby facilitating insulin exocytosis by raising intracellular levels of cAMP and Ca2+. Here we report that the stimulatory influence of GLP-1 on Ca2+ signaling results, in part, from cAMP-dependent mobilization of ryanodine-sensitive Ca2+ stores. Studies of human, rat, and mouse beta-cells demonstrate that the binding of a fluorescent derivative of ryanodine (BODIPY FL-X ryanodine) to its receptors is specific, reversible, and of high affinity. Rat islets and BTC3 insulinoma cells are shown by reverse transcriptase polymerase chain reaction analyses to express mRNA corresponding to the type 2 isoform of ryanodine receptor-intracellular Ca2+ release channel (RYR2). Single-cell measurements of [Ca2+]i using primary cultures of rat and human beta-cells indicate that GLP-1 facilitates Ca2+-induced Ca2+ release (CICR), whereby mobilization of Ca2+ stores is triggered by influx of Ca2+ through L-type Ca2+ channels. In these cells, GLP-1 is shown to interact with metabolism of D-glucose to produce a fast transient increase of [Ca2+]i. This effect is reproduced by 8-Br-cAMP, but is blocked by a GLP-1 receptor antagonist (exendin-(9-39)), a cAMP antagonist ((Rp)-cAMPS), an L-type Ca2+ channel antagonist (nimodipine), an antagonist of the sarco(endo)plasmic reticulum Ca2+ ATPase (thapsigargin), or by ryanodine. Characterization of the CICR mechanism by voltage clamp analysis also demonstrates a stimulation of Ca2+ release by caffeine. These findings provide new support for a model of beta-cell signal transduction whereby GLP-1 promotes CICR by sensitizing intracellular Ca2+ release channels to the stimulatory influence of cytosolic Ca2+.
CITATION STYLE
Holz, G. G., Leech, C. A., Heller, R. S., Castonguay, M., & Habener, J. F. (1999). cAMP-dependent Mobilization of Intracellular Ca2+ Stores by Activation of Ryanodine Receptors in Pancreatic β-Cells. Journal of Biological Chemistry, 274(20), 14147–14156. https://doi.org/10.1074/jbc.274.20.14147
Mendeley helps you to discover research relevant for your work.