In this study, we investigated the Mn-enhanced MRI (MEMRI) for detecting neurodegenerative processes in neonatal hypoxic-ischemic (H-I) cerebral injury. Seven-day-old rats were induced with H-I injury, and scanned for T 1-weighted image (T1WI) and T2-weighted image (T2WI) with and without systemic MnCl2 administration. Serial histological analysis was performed for Mn-superoxide dismutase (Mn-SOD) and glutamine synthetase (GS), which are Mn-binding enzymes against the oxidative stress and glutamate excitotoxicity in neurodegeneration. In the acute phase (first 2 days), the ipsilateral lesion exhibited no Mn enhancement in T1WIs, with histology showing no Mn-SOD and GS production. In the mid-phase (from day 3), Mn enhancement was found in the cortex, basal ganglia, and hippocampus, correlating with local Mn-SOD and GS increase. In the late phase, the enhancement became more localized to the pericyst basal ganglia and cortex, and then gradually diminished. In T2WIs, a signal decrease was observed from day 3 in the corresponding regions. Hypointense voids gradually formed in the late phase, correlating with the local iron accumulation. H-I rats without Mn2+ administration exhibited similar but weak changes in T1WIs and T2WIs from days 14 and 7, respectively. These results indicate that Mn2+ may be a useful in vivo probe for monitoring Mn-SOD and GS enzymatic activities. © 2008 Wiley-Liss, Inc.
CITATION STYLE
Yang, J., Khong, P. L., Wang, Y., Chu, A. C. Y., Ho, S. L., Cheung, P. T., & Wu, E. X. (2008). Manganese-enhanced MRI detection of neurodegeneration in neonatal hypoxic-ischemic cerebral injury. Magnetic Resonance in Medicine, 59(6), 1329–1339. https://doi.org/10.1002/mrm.21484
Mendeley helps you to discover research relevant for your work.