ITERATIVE CLOSEST POINT ALGORITHM for ACCURATE REGISTRATION of COARSELY REGISTERED POINT CLOUDS with CITYGML MODELS

5Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The Iterative Closest Point algorithm (ICP) is a standard tool for registration of a source to a target point cloud. In this paper, ICP in point-to-plane mode is adopted to city models that are defined in CityGML. With this new point-to-model version of the algorithm, a coarsely registered photogrammetric point cloud can be matched with buildings' polygons to provide, e.g., a basis for automated 3D facade modeling. In each iteration step, source points are projected to these polygons to find correspondences. Then an optimization problem is solved to find an affine transformation that maps source points to their correspondences as close as possible. Whereas standard ICP variants do not perform scaling, our algorithm is capable of isotropic scaling. This is necessary because photogrammetric point clouds obtained by the structure from motion algorithm typically are scaled randomly. Two test scenarios indicate that the presented algorithm is faster than ICP in point-to-plane mode on sampled city models.

Cite

CITATION STYLE

APA

Goebbels, S., Pohle-Fröhlich, R., & Pricken, P. (2019). ITERATIVE CLOSEST POINT ALGORITHM for ACCURATE REGISTRATION of COARSELY REGISTERED POINT CLOUDS with CITYGML MODELS. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. 4, pp. 201–208). Copernicus GmbH. https://doi.org/10.5194/isprs-annals-IV-2-W5-201-2019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free