Pollution by antibiotics has become a serious threat to public health. In this study, agricultural waste, corn husk, in the form of biochar, was utilized for antibiotic removal from wastewater. Two kinds of iron-loaded biochars, impregnation-pyrolysis biochar (IP) and pyrolysis-impregnation biochar (PI), were synthesized to adsorb the typical antibiotics tetracycline (TC) and levofloxacin (LEV). PI contained amorphous hydrated iron oxide, whereas the major component of IP was γ-Fe2O3. Compared with IP, PI had a much higher adsorption capacity for both TC and LEV. This was because PI could provide more -OH, especially -OHads, to serve as the adsorption sites. In comparison with TC, -OH was prone to combine with LEV. FT-IR and XPS results indicated that the mechanisms of LEV adsorption included hydrogen bonding, F-replacement, electrostatic attraction and bridging bidentate complexation. TC adsorption may involve complexation, hydrogen bonding and electrostatic attraction.
CITATION STYLE
Chen, Y., Shi, J., Du, Q., Zhang, H., & Cui, Y. (2019). Antibiotic removal by agricultural waste biochars with different forms of iron oxide. RSC Advances, 9(25), 14143–14153. https://doi.org/10.1039/c9ra01271k
Mendeley helps you to discover research relevant for your work.