In Situ Removal of Benzene as a Biomass Tar Model Compound Employing Hematite Oxygen Carrier

9Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Tar is an unavoidable biomass gasification byproduct. Tar formation reduces gasification efficiency and limits the further application of biomass gasification technology. Hence, efficient tar removal is a major problem to be solved in the formation and application of biomass gasification technology. Chemical looping gasification (CLG), a novel and promising gasification technology has attracted extensive attention owing to its low tar generation. Active oxygen carriers (OCs), the reduced OC in CLG, are considered to be excellent catalysts for tar cracking. In this study, the use of benzene as a typical tar model compound for tar removal using the iron ore OC is investigated. In the blank experiment, where an inert material (SiO2) is used as the carrier, the benzene cracking is relatively low, and the benzene conversion, H2 yield, and carbon conversion are 53.65%, 6.33%, and 1.24%, respectively. The addition of hematite promotes benzene cracking. A large amount of oxygen-containing gases (CO and CO2) are generated. Additionally, the conversion degrees for benzene, H2 and carbon are about 67.75%, 21.55%, and 38.39%, respectively. These results indicate that hematite performs both oxidation and catalysis during benzene cracking. The extension of the residence time facilitates benzene removal, owing to the good interaction between the gas phase and solid phase. The addition of water vapor inhibits the benzene conversion and promotes the conversion of carbon deposition. The lattice oxygen reactivity of hematite OC shows an uptrend as the cycle number is increased during the benzene conversion cycle. The experimental results confirm that CLG has a low-tar advantage and that hematite is an effective OC for benzene removal.

Cite

CITATION STYLE

APA

Huang, Z., Wang, Y., Dong, N., Song, D., Lin, Y., Deng, L., & Huang, H. (2022). In Situ Removal of Benzene as a Biomass Tar Model Compound Employing Hematite Oxygen Carrier. Catalysts, 12(10). https://doi.org/10.3390/catal12101088

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free