Beryllium-deuterium co-deposited layers were obtained using DC magnetron sputtering technique by varying the Ar/D2 gas mixture composition (10/1; 5/1; 2/1 and 1:1) at a constant deposition rate of 0.06 nm/s, 343 K substrate temperature and 2 Pa gas pressure. The surface morphology of the layers was analyzed using Scanning Electron Microscopy and the layer crystalline structure was analyzed by X-ray diffraction. Rutherford backscattering spectrometry was employed to deter-mine the chemical composition of the layers. D trapping states and inventory quantification were performed using thermal desorption spectroscopy. The morphology of the layers is not influenced by the Ar/D2 gas mixture composition but by the substrate type and roughness. The increase of the D2 content during the deposition leads to the deposition of Be-D amorphous layers and also reduces the layer thickness by decreasing the sputtering yield due to the poisoning of the Be target. The D retention in the layers is dominated by the D trapping in low activation binding states and the increase of D2 flow during deposition leads to a significant build-up of deuterium in these states. Increase of deuterium flow during deposition consequently leads to an increase of D retention in the beryllium layers up to 300%. The resulted Be-D layers release the majority of their D (above 99.99%) at temperatures lower than 700 K.
CITATION STYLE
Dinca, P., Staicu, C., Porosnicu, C., Pompilian, O. G., Banici, A. M., Butoi, B., … Burducea, I. (2021). Deuterium retention and release behavior from beryllium co-deposited layers at distinct ar/d ratio. Coatings, 11(12). https://doi.org/10.3390/coatings11121443
Mendeley helps you to discover research relevant for your work.