Recent years have seen greater interest in the use of discriminative classifiers in tracking systems, owing to their success in object detection. They are trained online with samples collected during tracking. Unfortunately, the potentially large number of samples becomes a computational burden, which directly conflicts with real-time requirements. On the other hand, limiting the samples may sacrifice performance. Interestingly, we observed that, as we add more and more samples, the problem acquires circulant structure. Using the well-established theory of Circulant matrices, we provide a link to Fourier analysis that opens up the possibility of extremely fast learning and detection with the Fast Fourier Transform. This can be done in the dual space of kernel machines as fast as with linear classifiers. We derive closed-form solutions for training and detection with several types of kernels, including the popular Gaussian and polynomial kernels. The resulting tracker achieves performance competitive with the state-of-the-art, can be implemented with only a few lines of code and runs at hundreds of frames-per-second. MATLAB code is provided in the paper (see Algorithm 1). © 2012 Springer-Verlag.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2012). Exploiting the circulant structure of tracking-by-detection with kernels. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7575 LNCS, pp. 702–715). https://doi.org/10.1007/978-3-642-33765-9_50