Efficacy of flecainide in catecholaminergic polymorphic ventricular tachycardia is mutation-independent but reduced by calcium overload

10Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Background: The dual Na+ and cardiac Ca2+-release channel inhibitor, Flecainide (FLEC) is effective in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by mutations in cardiac Ca2+-release channels (RyR2), calsequestrin (Casq2), or calmodulin. FLEC suppresses spontaneous Ca2+ waves in Casq2-knockout (Casq2−/−) cardiomyocytes, a CPVT model. However, a report failed to find FLEC efficacy against Ca2+ waves in another CPVT model, RyR2-R4496C heterozygous mice (RyR2R4496C+/−), raising the possibility that FLEC efficacy may be mutation dependent. Objective: To address this controversy, we compared FLEC in Casq2−/− and RyR2R4496C+/− cardiomyocytes and mice under identical conditions. Methods: After 30 min exposure to FLEC (6 µM) or vehicle (VEH), spontaneous Ca2+ waves were quantified during a 40 s pause after 1 Hz pacing train in the presence of isoproterenol (ISO, 1 µM). FLEC efficacy was also tested in vivo using a low dose (LOW: 3 mg/kg ISO + 60 mg/kg caffeine) or a high dose catecholamine challenge (HIGH: 3 mg/kg ISO + 120 mg/kg caffeine). Results: In cardiomyocytes, FLEC efficacy was dependent on extracellular [Ca2+]. At 2 mM [Ca2+], only Casq2−/− myocytes exhibited Ca2+ waves, which were strongly suppressed by FLEC. At 3 mM [Ca2+] both groups exhibited Ca2+ waves that were suppressed by FLEC. At 4 mM [Ca2+], FLEC no longer suppressed Ca2+ waves in both groups. Analogous to the results in myocytes, RyR2R4496C+/− mice (n = 12) had significantly lower arrhythmia scores than Casq2−/− mice (n = 9), but the pattern of FLEC efficacy was similar in both groups (i.e., reduced FLEC efficacy after HIGH dose catecholamine challenge). Conclusion: FLEC inhibits Ca2+ waves in RyR2R4496C+/− cardiomyocytes, indicating that RyR2 channel block by FLEC is not mutation-specific. However, FLEC efficacy is reduced by Ca2+ overload in vitro or by high dose catecholamine challenge in vivo, which could explain conflicting literature reports.

Cite

CITATION STYLE

APA

Hwang, H. S., Baldo, M. P., Rodriguez, J. P., Faggioni, M., & Knollmann, B. C. (2019). Efficacy of flecainide in catecholaminergic polymorphic ventricular tachycardia is mutation-independent but reduced by calcium overload. Frontiers in Physiology, 10(JUL). https://doi.org/10.3389/fphys.2019.00992

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free