Improved parameter targeting in 3D-integrated superconducting circuits through a polymer spacer process

2Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Three-dimensional device integration facilitates the construction of superconducting quantum information processors with more than several tens of qubits by distributing elements such as control wires, qubits, and resonators between multiple layers. The frequencies of resonators and qubits in flip-chip-bonded multi-chip modules depend on the details of their electromagnetic environment defined by the conductors and dielectrics in their vicinity. Accurate frequency targeting therefore requires precise control of the separation between chips and minimization of their relative tilt. Here, we describe a method to control the inter-chip separation by using polymer spacers. With the spacers, we measure a mean tilt of (76 ± 36) μrad, and a mean deviation of (0.4 ± 0.8) μm from the target inter-chip separation of 10 μm. We apply this process to coplanar waveguide resonator samples and observe chip-to-chip resonator frequency variations below 50 MHz (≈ 1 %). We measure internal quality factors of 5 × 10 5 at the single-photon level, suggesting that the added spacers are compatible with low-loss device fabrication.

Cite

CITATION STYLE

APA

Norris, G. J., Michaud, L., Pahl, D., Kerschbaum, M., Eichler, C., Besse, J. C., & Wallraff, A. (2024). Improved parameter targeting in 3D-integrated superconducting circuits through a polymer spacer process. EPJ Quantum Technology, 11(1). https://doi.org/10.1140/epjqt/s40507-023-00213-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free