A simple prediction model to estimate obstructive coronary artery disease

6Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: A simple noninvasive model to predict obstructive coronary artery disease (OCAD) may promote risk stratification and reduce the burden of coronary artery disease (CAD). This study aimed to develop pre-procedural, noninvasive prediction models that better estimate the probability of OCAD among patients with suspected CAD undergoing elective coronary angiography (CAG). Methods: We included 1262 patients, who had reliable Framingham risk variable data, in a cohort without known CAD from a prospective registry of patients referred for elective CAG. We investigated pre-procedural OCAD (≥50% stenosis in at least one major coronary vessel based on CAG) predictors. Results: A total of 945 (74.9%) participants had OCAD. The final modified Framingham scoring (MFS) model consisted of anemia, high-sensitivity C-reactive protein, left ventricular ejection fraction, and five Framingham factors (age, sex, total and high-density lipoprotein cholesterol, and hypertension). Bootstrap method (1000 times) revealed that the model demonstrated a good discriminative power (c statistic, 0.729 ± 0.0225; 95% CI, 0.69-0.77). MFS provided adequate goodness of fit (P = 0.43) and showed better performance than Framingham score (c statistic, 0.703 vs. 0.521; P < 0.001) in predicting OCAD, thereby identifying patients with high risks for OCAD (risk score ≥ 27) with ≥70% predictive value in 68.8% of subjects (range, 37.2-87.3% for low [≤17] and very high [≥41] risk scores). Conclusion: Our data suggested that the simple MFS risk stratification tool, which is available in most primary-level clinics, showed good performance in estimating the probability of OCAD in relatively stable patients with suspected CAD; nevertheless, further validation is needed.

Cite

CITATION STYLE

APA

Chen, S., Liu, Y., Islam, S. M. S., Yao, H., Zhou, Y., Chen, J. yan, & Li, Q. (2018). A simple prediction model to estimate obstructive coronary artery disease. BMC Cardiovascular Disorders, 18(1). https://doi.org/10.1186/s12872-018-0745-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free