Prospective studies of diagnostic test accuracy have important advantages over retrospective designs. Yet, when the disease being detected by the diagnostic test(s) has a low prevalence rate, a prospective design can require an enormous sample of patients. We consider two strategies to reduce the costs of prospective studies of binary diagnostic tests: stratification and two-phase sampling. Utilizing neither, one, or both of these strategies provides us with four study design options: (1) the conventional design involving a simple random sample (SRS) of patients from the clinical population; (2) a stratified design where patients from higher-prevalence subpopulations are more heavily sampled; (3) a simple two-phase design using a SRS in the first phase and selection for the second phase based on the test results from the first; and (4) a two-phase design with stratification in the first phase. We describe estimators for sensitivity and specificity and their variances for each design, along with sample size estimation. We offer some recommendations for choosing among the various designs. We illustrate the study designs with two examples.
CITATION STYLE
Obuchowski, N. A. (2002). Prospective studies of diagnostic test accuracy when disease prevalence is low. Biostatistics, 3(4), 477–492. https://doi.org/10.1093/biostatistics/3.4.477
Mendeley helps you to discover research relevant for your work.