Researchers are employing deep learning (DL) in many fields, and the scope of its application is expanding. However, because understanding the rationale and validity of DL decisions is difficult, a DL model is occasionally called a black-box model. Here, we focus on a DL-based explainable time-series prediction model. We propose a model based on long short-term memory (LSTM) followed by a convolutional neural network (CNN) with a residual connection, referred to as the LSTM-resCNN. In comparison to one-dimensional CNN, bidirectional LSTM, CNN-LSTM, LSTM-CNN, and MTEX-CNN models, the proposed LSTM-resCNN performs best on the three datasets of fine dust (PM2.5), bike-sharing, and bitcoin. Additionally, we tested with Grad-CAM, Integrated Gradients, and Gradients, three gradient-based approaches for the model explainability. These gradient-based techniques combined very well with the LSTM-resCNN model. Variables and time lags that considerably influence the explainable time-series prediction can be identified and visualized using gradients and integrated gradients.
CITATION STYLE
Choi, H., Jung, C., Kang, T., Kim, H. J., & Kwak, I. Y. (2022). Explainable Time-Series Prediction Using a Residual Network and Gradient-Based Methods. IEEE Access, 10, 108469–108482. https://doi.org/10.1109/ACCESS.2022.3213926
Mendeley helps you to discover research relevant for your work.