The DNA binding properties of hMutSalpha and hMutLalpha and complex formation of hMutSalpha with hMutLalpha and hMutLbeta were investigated using binding experiments on magnetic bead-coupled DNA substrates with nuclear extracts as well as purified proteins. hMutSalpha binding to homoduplex DNA was disrupted by lower NaCl concentrations than hMutSalpha binding to a mismatch. ATP markedly reduced the salt resistance of hMutSalpha binding but hMutSalpha still retained affinity for heteroduplexes. hMutSalpha formed a complex with hMutLalpha and hMutLbeta on DNA in the presence of ATP. This complex only formed on 81mer and not 32mer DNA substrates. Complex formation was enhanced by a mismatch in the DNA substrate, and hMutLalpha and hMutLbeta were shown to enter the complex at different ATP concentrations. Purified hMutLalpha showed an intrinsic affinity for DNA, with a preference for single-stranded over double-stranded DNA.
CITATION STYLE
Plotz, G. (2002). hMutSalpha forms an ATP-dependent complex with hMutLalpha and hMutLbeta on DNA. Nucleic Acids Research, 30(3), 711–718. https://doi.org/10.1093/nar/30.3.711
Mendeley helps you to discover research relevant for your work.