Microstructure and Corrosion Behavior of Laser Cladding FeCoNiCrBSi Based High-Entropy Alloy Coatings

12Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

High-entropy amorphous alloys designed based on the concept of multi-principal components have the comprehensive advantages of high passivation element content and amorphous structure, and are considered to be one of the promising alternative protective materials in extreme marine environments. However, based on the composition of traditional amorphous alloys, the multi-principal design significantly reduces the glass forming ability of high-entropy amorphous alloys. Based on the traditional FeCoCrNiBSi high-entropy amorphous alloy, Fe19.6Co19.6Ni19.6Cr19.6(B13.72Si5.88)19.6Y2 high-entropy amorphous alloy was designed by microalloying in this study. The traditional Fe43.6Co6Ni17.4Cr9B17.5Si1.5Nb5 iron-based amorphous alloy was selected as the comparison material. Then, spherical alloy powders were prepared by gas atomization. The amorphous nanocrystalline composite coatings were deposited on the 304 stainless steel by laser cladding technology. The microstructure of the coatings was characterized by scanning electron microscopy and X-ray diffractometer. The corrosion behavior of laser cladding coatings in 3.5 wt.% NaCl solution were investigated in detail. The results show that the Fe43.6Co6Ni17.4Cr9B17.5Si1.5Nb5 powder is composed of FCC, Laves and boride phases. Whereas the Fe19.6Co19.6Ni19.6Cr19.6(B13.72Si5.88)19.6Y2 high-entropy amorphous alloy powder is composed of FCC and boride phases. Due to the remelting and multiple heat treatments during the preparation of the laser cladding coatings, borides were precipitated in both coatings. The microstructure of the two coatings from the bonding area with the substrate to the top layer are plane grains, dendrite, equiaxed grains and amorphous phase, respectively. Fe19.6Co19.6Ni19.6Cr19.6(B13.72Si5.88)19.6Y2 high-entropy amorphous alloy coating exhibits high corrosion potential, passivation film resistance and low corrosion current density in 3.5 wt.% NaCl solution. In addition, the passivation film formed on the coating has higher Cr content and lower defect concentration, showing more excellent corrosion resistance.

Cite

CITATION STYLE

APA

Zhang, H., Li, W., Xu, H., Chen, L., Zeng, J., Ding, Z., … Liu, B. (2022). Microstructure and Corrosion Behavior of Laser Cladding FeCoNiCrBSi Based High-Entropy Alloy Coatings. Coatings, 12(5). https://doi.org/10.3390/coatings12050628

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free