Double image encryption based on 2D discrete fractional fourier transform and piecewise nonlinear chaotic map

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Secure transmission of sensitive data over open networks is a challenge in the present scenario of digital signal transmissions. Especially in 2D image signals, the adjacent pixel correlation is high which makes it a challenge to encrypt or hide the information from being fraudulently interpreted. Optical signal processing is preferred for image encryption owing to its high speed parallel processing. Fractional transforms are used for the digital implementation of the optical processing due to the fact that fractional orders enable to analyze a time variant signal where each fractional order correspond to an arbitrary angle of rotation. In this work, we apply a fractional Fourier transform for double image encryption, as fractional orders provide randomness and serve as secret key. The complex outcome of transform becomes a limitation due to requirement of double memory for storage and transmission besides computational complexity. To overcome this issue, a reality preserving scheme is applied to obtain real output from transform. A piecewise nonlinear chaotic map is used to introduce chaotic blending in the double image data. The larger key space of PWNCA based blending offers yet another security layer to the optical transform based encryption. The simulation results give testimony to the acquired randomness in the encrypted data. The proposed scheme is quite sensitive to keys and is robust against potential attacks.

Cite

CITATION STYLE

APA

kaur, G., Agarwal, R., & Patidar, V. (2019). Double image encryption based on 2D discrete fractional fourier transform and piecewise nonlinear chaotic map. In Communications in Computer and Information Science (Vol. 955, pp. 519–530). Springer Verlag. https://doi.org/10.1007/978-981-13-3140-4_47

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free