Transcriptomic analysis identifies organ-specific metastasis genes and pathways across different primary sites

12Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Metastasis is the most devastating stage of cancer progression and often shows a preference for specific organs. Methods: To reveal the mechanisms underlying organ-specific metastasis, we systematically analyzed gene expression profiles for three common metastasis sites across all available primary origins. A rank-based method was used to detect differentially expressed genes between metastatic tumor tissues and corresponding control tissues. For each metastasis site, the common differentially expressed genes across all primary origins were identified as organ-specific metastasis genes. Results: Pathways enriched by these genes reveal an interplay between the molecular characteristics of the cancer cells and those of the target organ. Specifically, the neuroactive ligand-receptor interaction pathway and HIF-1 signaling pathway were found to have prominent roles in adapting to the target organ environment in brain and liver metastases, respectively. Finally, the identified organ-specific metastasis genes and pathways were validated using a primary breast tumor dataset. Survival and cluster analysis showed that organ-specific metastasis genes and pathways tended to be expressed uniquely by a subgroup of patients having metastasis to the target organ, and were associated with the clinical outcome. Conclusions: Elucidating the genes and pathways underlying organ-specific metastasis may help to identify drug targets and develop treatment strategies to benefit patients.

Cite

CITATION STYLE

APA

Zhang, L., Fan, M., Napolitano, F., Gao, X., Xu, Y., & Li, L. (2021). Transcriptomic analysis identifies organ-specific metastasis genes and pathways across different primary sites. Journal of Translational Medicine, 19(1). https://doi.org/10.1186/s12967-020-02696-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free