Advancing Autonomous Surface Vehicles: A 3D Perception System for the Recognition and Assessment of Docking-Based Structures

28Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The automation of typically intelligent and decision-making processes in the maritime industry leads to fewer accidents and more cost-effective operations. However, there are still lots of challenges to solve until fully autonomous systems can be employed. Artificial Intelligence (AI) has played a major role in this paradigm shift and shows great potential for solving some of these challenges, such as the docking process of an autonomous vessel. This work proposes a lightweight volumetric Convolutional Neural Network (vCNN) capable of recognizing different docking-based structures using 3D data in real-time. A synthetic-to-real domain adaptation approach is also proposed to accelerate the training process of the vCNN. This approach makes it possible to greatly decrease the cost of data acquisition and the need for advanced computational resources. Extensive experiments demonstrate an accuracy of over 90% in the recognition of different docking structures, using low resolution sensors. The inference time of the system was about 120ms on average. Results obtained using a real Autonomous Surface Vehicle (ASV) demonstrated that the vCNN trained with the synthetic-to-real domain adaptation approach is suitable for maritime mobile robots. This novel AI recognition method, combined with the utilization of 3D data, contributes to an increased robustness of the docking process regarding environmental constraints, such as rain and fog, as well as insufficient lighting in nighttime operations.

Cite

CITATION STYLE

APA

Pereira, M. I., Claro, R. M., Leite, P. N., & Pinto, A. M. (2021). Advancing Autonomous Surface Vehicles: A 3D Perception System for the Recognition and Assessment of Docking-Based Structures. IEEE Access, 9, 53030–53045. https://doi.org/10.1109/ACCESS.2021.3070694

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free