The pathogenic basis of inclusion body myositis (IBM), the leading muscle degenerative disease afflicting the elderly, is unknown, although the histopathological features are remarkably similar to those observed in Alzheimer's disease. One leading hypothesis is that the buildup of amyloid-β (Aβ) peptide within selective skeletal muscle fibers contributes to the degenerative phenotype. Aβ is a small peptide derived via endoproteolysis of the amyloid precursor protein (APP). To determine the pathogenic effect of augmenting Aβ42 levels in skeletal muscle, we used a genetic approach to replace the endogenous wild-type presenilin-1 (PS1) allele with the PS1M146V allele in MCK-APP mice. Although APP transgene expression was unaltered, Aβ levels, particularly Aβ42, were elevated in skeletal muscle of the double transgenic (MCK-APP/PS1) mice compared to the parental MCK-APP line. Elevated phosplio-tau accumulation was found in the MCK-APP/PS1 mice, and the greater activation of GSK-3β and cdk5 were observed. Other IBM-like pathological features, such as inclusion bodies and inflammatory infiltrates, were more severe and prominent to die MCK-APP/PS1 mice. Motor coordination and balance were more adversely affected and manifested at an earlier age in the MCK-APP/PS1 mice. The data presented here provide experimental evidence that Aβ42 plays a proximal and critical role in the muscle degenerative process. Copyright © American Society for Investigative Pathology.
CITATION STYLE
Kitazawa, M., Green, K. N., Caccamo, A., & LaFerla, F. M. (2006). Genetically augmenting Aβ42 levels in skeletal muscle exacerbates inclusion body myositis-like pathology and motor deficits in transgenic mice. American Journal of Pathology, 168(6), 1986–1997. https://doi.org/10.2353/ajpath.2006.051232
Mendeley helps you to discover research relevant for your work.