Mutant herpes simplex virus type 1 (HSV-1) viruses were constructed to characterize the roles of the conserved histidine residues (H61 and H148) of HSV-1 protease in the regulation of catalytic activity and virus maturation. Viruses containing mutations at H61 (H61V-V711, H61Y-V715, and H61A-V730) were unable to grow on Vero cells. These mutant viruses could process neither Pra to N0 nor ICP-35cd to ICP-35ef. Transmission electron microscopy studies of H61A-V730-infected Vero cells indicated that capsid maturation is arrested at a state characterized by the predominance of large symmetrical arrays of B capsids within the nucleus. Two mutations at H148 (in viruses H148A-V712 and H148E-V728) gave rise to mutant viruses that grew with a small-plaque phenotype; one of the viruses, H148E-V728, was particularly attenuated when grown at a low multiplicity of infection. The rate of processing of Pra to N0 in infected Vero cells increased in the order H148A-V712 < H148E-V728
CITATION STYLE
Register, R. B., & Shafer, J. A. (1997). Alterations in catalytic activity and virus maturation produced by mutation of the conserved histidine residues of herpes simplex virus type 1 protease. Journal of Virology, 71(11), 8572–8581. https://doi.org/10.1128/jvi.71.11.8572-8581.1997
Mendeley helps you to discover research relevant for your work.