A rapid assay for assessing bacterial effects on Arabidopsis thermotolerance

0Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The role of beneficial microbes in mitigating plant abiotic stress has received considerable attention. However, the lack of a reproducible and relatively high-throughput screen for microbial contributions to plant thermotolerance has greatly limited progress in this area, this slows the discovery of novel beneficial isolates and the processes by which they operate. Results: We designed a rapid phenotyping method to assess the effects of bacteria on plant host thermotolerance. After testing multiple growth conditions, a hydroponic system was selected and used to optimize an Arabidopsis heat shock regime and phenotypic evaluation. Arabidopsis seedlings germinated on a PTFE mesh disc were floated onto a 6-well plate containing liquid MS media, then subjected to heat shock at 45 °C for various duration. To characterize phenotype, plants were harvested after four days of recovery to measure chlorophyll content. The method was extended to include bacterial isolates and to quantify bacterial contributions to host plant thermotolerance. As an exemplar, the method was used to screen 25 strains of the plant growth promoting Variovorax spp. for enhanced plant thermotolerance. A follow-up study demonstrated the reproducibility of this assay and led to the discovery of a novel beneficial interaction. Conclusions: This method enables rapid screening of individual bacterial strains for beneficial effects on host plant thermotolerance. The throughput and reproducibility of the system is ideal for testing many genetic variants of Arabidopsis and bacterial strains.

Cite

CITATION STYLE

APA

Lee, J. H., Burdick, L. H., Piatkowski, B., Carrell, A. A., Doktycz, M. J., Pelletier, D. A., & Weston, D. J. (2023). A rapid assay for assessing bacterial effects on Arabidopsis thermotolerance. Plant Methods, 19(1). https://doi.org/10.1186/s13007-023-01022-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free