Opening the Black Box of Imputation Software to Study the Impact of Reference Panel Composition on Performance

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Genotype imputation is widely used to enrich genetic datasets. The operation relies on panels of known reference haplotypes, typically with whole-genome sequencing data. How to choose a reference panel has been widely studied and it is essential to have a panel that is well matched to the individuals who require missing genotype imputation. However, it is broadly accepted that such an imputation panel will have an enhanced performance with the inclusion of diversity (haplotypes from many different populations). We investigate this observation by examining, in fine detail, exactly which reference haplotypes are contributing at different regions of the genome. This is achieved using a novel method of inserting synthetic genetic variation into the reference panel in order to track the performance of leading imputation algorithms. We show that while diversity may globally improve imputation accuracy, there can be occasions where incorrect genotypes are imputed following the inclusion of more diverse haplotypes in the reference panel. We, however, demonstrate a technique for retaining and benefitting from the diversity in the reference panel whilst avoiding the occasional adverse effects on imputation accuracy. What is more, our results more clearly elucidate the role of diversity in a reference panel than has been shown in previous studies.

Cite

CITATION STYLE

APA

Dekeyser, T., Génin, E., & Herzig, A. F. (2023). Opening the Black Box of Imputation Software to Study the Impact of Reference Panel Composition on Performance. Genes, 14(2). https://doi.org/10.3390/genes14020410

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free