A physical-mathematical model is developed for concrete exposed to sea water. The model describes: (1)Diffusion of oxygen, chloride ions, and pore water through the concrete cover of reinforcement; (2)ferrous hydroxide near steel surface; (3)the depassivation of steel due to critical chloride ion concentration; (4)the cathodic and anodic electric potentials depending on oxygen and ferrous hydroxide concentrations according to Nernst equation; (5)the polarization of electrodes due to changes in concentration of oxygen and ferrous hydroxide; (6)the flow of electric current through the electrolyte in pores of concrete; (7)the mass sinks or sources of oxygen, ferrous hydroxide, and hydrated red rust electrodes, based on Faraday law; and (8)the rust production rate, based on reaction kinetics. To enable calculations, numerical values of all coefficients are indicated. The theory is completed by formulating the problem as an initial-boundary value problem.
CITATION STYLE
Bazant, Z. P. (1979). PHYSICAL MODEL FOR STEEL CORROSION IN CONCRETE SEA STRUCTURES - THEORY. ASCE J Struct Div, 105(6), 1137–1153.
Mendeley helps you to discover research relevant for your work.