The purpose of this work was to demonstrate the feasibility of building recurrent artificial neural networks with hybrid complementary metal oxide semiconductor (CMOS)/memristor circuits. To do so, we modeled a Hopfield network implementing an analog-to-digital converter (ADC) with up to 8 bits of precision. Major shortcomings affecting the ADC's precision, such as the non-ideal behavior of CMOS circuitry and the specific limitations of memristors, were investigated and an effective solution was proposed, capitalizing on the in-field programmability of memristors. The theoretical work was validated experimentally by demonstrating the successful operation of a 4-bit ADC circuit implemented with discrete Pt/TiO2-x/Pt memristors and CMOS integrated circuit components.
CITATION STYLE
Guo, X., Merrikh-Bayat, F., Gao, L., Hoskins, B. D., Alibart, F., Linares-Barranco, B., … Strukov, D. B. (2015). Modeling and experimental demonstration of a hopfield network analog-to-digital converter with hybrid CMOS/memristor circuits. Frontiers in Neuroscience, 9(DEC). https://doi.org/10.3389/fnins.2015.00488
Mendeley helps you to discover research relevant for your work.