Simultaneous detection of acetaminophen, catechol and hydroquinone using a graphene-assisted electrochemical sensor

17Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Simple, rapid and sensitive analysis of drug-derived pollutants is critically valuable for environmental monitoring. Here, taking acetaminophen, hydroquinone and catechol as a study example, a sensor based on an ITO/APTES/r-GO@Au electrode was developed for separate and simultaneous determination of phenolic pollutants. ITO electrodes that are modified with 3-aminopropyltriethoxysilane (APTES), graphene (GO) and Au nanoparticles (Au NPs) can significantly enhance the electronic transport of phenolic pollutants at the electrode surface. The redox mechanisms of phenolic pollutants include the electron transfer with the enhancement of r-GO@Au. The modified ITO electrode exhibits excellent electrical properties to phenolic pollutants and a good linear relationship between ECL intensity and the concentration of phenolic pollutants, with a limit of detection of 0.82, 1.41 and 1.95 μM, respectively. The separate and simultaneous determination of AP, CC and HQ is feasible with the ITO/APTES/r-GO@Au electrode. The sensor shows great promise as a low-lost, sensitive, and rapid method for simultaneous determination of drug-derived pollutants.

Cite

CITATION STYLE

APA

Wang, G., Zhang, S., Wu, Q., Zhu, J., Chen, S., Lei, Y., … Xiao, Y. (2022). Simultaneous detection of acetaminophen, catechol and hydroquinone using a graphene-assisted electrochemical sensor. RSC Advances, 12(37), 23762–23768. https://doi.org/10.1039/d2ra03900a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free