Tetracycline-resistant clinical Helicobacter pylori isolates with and without mutations in 16S rRNA-encoding genes

62Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Tetracycline-resistant Helicobacter pylori strains have been increasingly reported worldwide. However, only a small number of tetracycline-resistant strains have been studied with regard to possible mechanisms of resistance and those studies have focused on mutations in the tetracycline binding sites of 16S rRNA-encoding genes. We here report studies of 41 tetracycline-resistant H. pylori strains (tetracycline MICs, 4 to 32 μg/ml) from North America (n = 12) and from East Asia (n = 29). DNA sequence analyses of 16S rRNA-encoding genes revealed that 22 (54%) of the resistant isolates carried one of five different single-nucleotide substitutions (CGA, GGA, TGA, AGC, or AGT) at the putative tetracycline binding site (AGA965-967). Single-nucleotide substitutions were associated with reduced ribosomal binding and with slightly increased tetracycline MICs (1 to 2 μg/ml). The 19 tetracycline-resistant isolates with no detectable mutations in the tetracycline binding site had normal tetracycline-ribosome binding. All tetracycline-resistant isolates, including those with and those without mutations in the tetracycline binding site, showed decreased accumulation of tetracycline. These results suggest that tetracycline resistance is multifactorial, involving alterations both in ribosomal binding and in membrane permeability.

Cite

CITATION STYLE

APA

Jeng, Y. W., Kim, J. J., Reddy, R., Wang, W. M., Graham, D. Y., & Kwon, D. H. (2005). Tetracycline-resistant clinical Helicobacter pylori isolates with and without mutations in 16S rRNA-encoding genes. Antimicrobial Agents and Chemotherapy, 49(2), 578–583. https://doi.org/10.1128/AAC.49.2.578-583.2005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free